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Lagrangian and Eulerian velocity intermittency
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Abstract. Usual turbulence experiments, based on the Taylor hypothesis, differ from true Eulerian mea-
surements. This is the origin of the apparent discrepancy between a recent two point correlation analysis
and the multiplicative cascade picture. Indeed, both Eulerian and Lagrangian observations perfectly agree
with this picture.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence

In a recent work, Delour et al. [1] analyse the intermit-
tency in several experimental records of turbulent velocity
[2–4]. One of these experiments was of Lagrangian type,
recording the velocity of a single particle following the flow
[4]. The other experiments were of Eulerian type, looking
at the velocity at a fixed point in the laboratory frame.
One of the main results of their study is that the corre-
lations deduced from the Lagrangian records are in good
agreement with the multiplicative cascade picture invoked
for modelizing the intermittency. On the opposite, Eule-
rian experiments seem to disagree with this cascade struc-
ture. In this paper, we argue that this apparent disagree-
ment is due to the way the Eulerian experiments are made,
through the Taylor frozen turbulence approximation [5],
which cumulate spatial decorrelation and time decorrela-
tion.

In order to stress the differences between Lagrangian
and Eulerian records, Delour et al. [1] focussed on two
quantities. One is the mean squared deviation of ln(|δvθ |):
C2 = 〈(δln(|δvθ|))2〉, where |δvθ| is the absolute value of
the velocity increment on time intervals θ:

δvθ = v(t + θ) − v(t);
δln(|δvθ|) = ln(|δvθ|) − 〈ln(|δvθ|)〉. (1)

In the frame of the Taylor hypothesis, for Eulerian records,
v(t + θ) − v(t) is interpreted as the longitudinal velocity
difference vx(x)− vx(x+ρ) where x is the direction of the
average velocity U and ρ = Uθ.

The second quantity is the time correlation of the same
variable δlθ = δln(|δvθ|):

Cθ(τ) = 〈(δlθ(t + τ))(δlθ(t))〉 (2)

where identity is assumed between the ensemble average
〈∗〉 and the time average when t runs on the whole record.
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To be short, the results are as follows. First, Delour
et al. [1] recognize that δvθ can be considered as the prod-
uct of two random independent variable, an amplitude aθ

and a sign sθ, the latter being approximately Gaussian, of
variance one, and short correlated in time. Then, defining:

δlθ = δln(aθ);
δln(|δvθ |) = δlθ + δln(|sθ|) (3)

we have C2 = 〈(δlθ)2〉 + cst, the constant being
〈(δln(|sθ|))2〉 � 1.24. Moreover:

Cθ(τ) = 〈(δlθ(t + τ))(δlθ(t))〉 (4)

for all τ larger than the correlation time of sθ [6].
Delour et al. [1] find that, in agreement with the

K.O.62 [5] theory, C2 behaves logarithmically with θ,
both for Eulerian ((dC2/dlnθ) = −µE), and Lagrangian
((dC2/dlnθ) = −µL) cases, up to a large scale correlation
time T , above which C2 is constant. C2 is also constant un-
der a dissipative scale θo. If not determined by the probe
cut-off, θo = η/U , where η is the Kolmogorov scale for the
Eulerian case. In the Lagrangian case, θo = τη = (ν/ε)1/2,
where ν is the kinematic viscosity, and ε the average dissi-
pated power per unit mass. Physically, τη is the turn over
time of the smallest eddies, of size η. µL is found much
larger than µE (µE = 2.5× 10−2 and µL = 11× 10−2), in
agreement with the Borgas and Sawford [7] theory.

As for Cθ(τ), Delour et al. [1] note that, in agree-
ment with the multifractal cascade models, it behaves
logarithmically in the Lagrangian case within the range
θ < τ < T (Cθ(τ) � −µLln(τ/T )). However, the
behaviour is quadratic in ln(τ) for the Eulerian case
(Cθ(τ) ∝ (ln(τ/T ))2). We shall show below how these
apparently contrasting results can be reconciliated.
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For the Lagrangian case, we keep the same definition
of the correlation, and take as granted that:

LCθ(τ) = 〈(δlθ(t + τ))(δlθ(t))〉
= µLln(T/τ). (5)

For the Eulerian case, we define:

ECρ(r) = 〈(δlρ(x + r, t))(δlρ(x, t))〉 (6)

with δlρ(x) = ln(aρ(x))−〈ln(aρ)〉. We claim that it differs
from the above measured quantity, based on the Taylor
Hypothesis, which we shall call TaCρ(τ):

TaCρ(τ) = 〈(δlρ(x, t + τ))(δlρ(x, t))〉 (7)

with r = Uτ and ρ = Uθ.
According to the cascade models, we should have

ECρ(r) = µE ln(L/r), where L � U ′T (U ′ is the veloc-
ity rms). This can be written:

δlρ(x, t + τ) = αEδlρ(x + r, t + τ) + δ (8)

where αE = ECρ(r)/〈δl2ρ〉 and δ is decorrelated from
δlρ(x + r, t + τ).

If we remark that the fluid element, being at x at time
t, is at x + r at time t + τ , we can write, in the same way:

δlρ(x + r, t + τ) = αLδlρ(x, t) + δ′ (9)

with αL =LCθ(τ)/〈δl2θ〉.
Then:

δlρ(x, t + τ) = αEαLδlρ(x, t) + αEδ′ + δ. (10)

We assume that δ, which is decorrelated from δlρ(x +
r, t + τ) is also decorrelated from δlρ(x, t), as δ′ is. This
is justified by the great number of degrees of freedom for
δlρ(x, t). Then we have:

TaCρ(τ) = αLαE〈δl2ρ〉
= (µLµE/〈δl2θ〉)ln(T/τ)ln(L/r). (11)

Put in other way, the correlation is proportional to the
probability to δlρ not having been decorrelated, either in
space or in time.

As quoted above, an important time scale is the La-
grangian dissipative time τη = (ν/ε)1/2. Using the rela-
tion: ε = 15νU ′2/λ2, where λ is the Taylor scale and U ′

the velocity rms, we have τη = λ/U ′√15 � λ/4U ′.

In general θ is chosen smaller than τη. Then 〈δl2θ〉 =
µLln(T/τη) � µLln(Rλ) where Rλ is the Taylor scale
based Reynolds number. The behaviour of Cρ(τ) will be
different, depending if τ is larger or smaller than τη. τ = τη

corresponds to r = λU/4U ′.
If τ > τη (r > λU/4U ′), approximating

ln(T/τ)ln(L/r) � ln(T/τ)2, we have:

Cρ(τ) = µE ln(T/τ)2/ln(Rλ) (12)

in full agreement with Delour et al.[1].
If τ < τη (r < λU/4U ′), there is no time decorrelation,

and:

Cρ(τ) = µE ln(L/r) (13)

To summarize, the analysis by Delour et al. [1] of Eu-
lerian experiments is in good agreement with the multi-
plicative cascade structure if account is taken of the de-
viations from the Taylor hypothesis. The corresponding
time decorrelation has no effect for scales smaller than
λU/4U ′, in agreement with their observations. There is
no contradiction between Lagrangian and Eulerian obser-
vations, and, as they propose, the logarithmic correlation
seems to capture all the physics of intermittency.

Thanks are due to N. Mordant and J. Delour for communi-
cating their results prior to publication. Stimulating discus-
sions with P. Chainais, J. Delour, N. Mordant and their thesis
advisors are gratefully acknowledged. Laurent Chevillard [6]
usefully criticized the manuscript.
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